
Актюбинский филиал АО «Национальная компания КазАвтоЖол» Министерства по инвестициям и развитию Республики Казахстан

TOO «Amir Zhoba»

Стадия: Рабочий проект

Капитальный ремонт подъездной дороги к селу Монке би Шалкарского района Актюбинской области

Инженерно-геодезический отчет

Исполнил:

Директор

Начальник отдела изысканий

ТОО ТЕСТ УКГеоСтройПроект»

А.А. Сыщенко

Ю.А. Сороколетов

Алматы 2021г

Оглавление

1.	Общие сведения	
	Топографо-геодезические работы	
	Охрана труда и техника безопасности	
	Заключение	
	топриложение	
	РТЕЖИ	

Генеральная схема трассы

План трассы (2листа)

ПРИЛОЖЕНИЯ

- 1. Техническое задание
- 2. Ведомость реперов
- 3. Схема расположения реперов
- 4. Ведомость существующих коммуникаций надземн, подземн, параллельно трассе
- 5. Карточки пересекаемых надземных коммуникаций
- б. Ведомость пересечений и примыканий

7. Общие сведения

Капитальный ремонт подъездной дороги к селу Монке би Шалкарского района Актюбинской области.

Инженерно-геодезические работы выполнены на основании технического задания от 15.01.2021г, выданного главным инженером проекта Корниевским Д.В., **TOO** «**Amir Zhoba**» г. Алматы (приложение № 1).

Объект инженерно-геодезических изысканий проходит по подъездной дороге к селу Монке би Шалкарского района Актюбинской области.

Актюбинская область образована 10 марта 1932 года. Занимаемая площадь составляет 299,8тыс. км 2 , население 888,2тыс. человек (01.08.2020 г.). Административным центром области является г. Актобе.

Область расположена в северной части западного Казахстана. На севере область граничит с Оренбургской областью Р.Ф., на северо- востоке – с Костанайской областью, на юго- востоке с Карагандинской и Кызылординской областями Казахстана, на юго с Республикой Каракалпакстан Узбекистана, на юго-западе с Западно-Казахстанской областью Казахстана.

В области имеется более 150озер, гпавным образом мелких соленых, некоторые из них, персыхая, образуют солончаки. Маловодные реки и соленые озера не пригодны для хозяйственных целей. Широко используются пресные подземные воды.

Актюбинская область – крупный промышленный регион Казахстана. Основа промышленной отрасли - горнодобывающая и химическая промышленность, черная металлургия.

Широко развито сельское хозяйство, это животноводство и растениеводство.

Протяженность автомобильных дорог республиканского значения с твердым покрытием 1894км, областного 1262,8км, 3699,8км районного значения. В области имеются автомобильные дороги республиканского значения «Самара-Шимкент», «Актобе-Кандыгаш-Эмба-Шалкар», «Актобе-Мартук», «Актобе-Орск», «Актобе-Атырау-гр.РФ(на Астрахань)».

Протяженность железных дорог около 1140км. Основные магистрали:Оренбург-Актюбинск - Ташкент и Атырау – Кандыгаш – Орск.

Целевое назначение изысканий: комплекс работ, обеспечивающих получение топографо-геодезических материалов и данных, необходимых для принятия проектных решений и основных технико-экономических показателей строительства проектируемого объекта, а также для производства других видов инженерных изысканий, получение ЦММ.

Общая протяжённость участка – 0,6 км.

1.1 Исполнители инженерно-геодезических изысканий и сроки выполнения работ

Полевые работы выполнены в январе-феврале 2021г., геодезистами: Сороколетов Ю.А., геологами: Омельченко А.Г., буровыми мастерами: Жарменов Б.Т., помощник буровика Сариев Б.Ж

Камеральная обработка полевых материалов выполнялась: Сороколетовым Ю.А..

Оформление графических документов, формирование отчета и сопроводительных документов, множительные работы выполнены в офисе ТОО «МОС ИнжГеоСтройПроект», г. Алматы.

8. Топографо-геодезические работы

2.1 Топографо-геодезическая изученность района инженерных изысканий

В качестве материалов топографо-геодезической изученности объекта использованы:

- аэрокосмические снимки участка низкого разрешения Google и цифровые панорамы участка, размещенные в интернете.

Системы координат и высот

Съемочная геодезическая сеть, в пределах площади топографической съемки, создана путем получения GPS сигнала в режиме RTK-измерений от базы расположенной на участке проведения работ.

Система координат

- WGS-84 с переходом в условную.

Система высот

- WGS-84 с переходом в условную.

2.3 Инструктивно-нормативные документы

При выполнении инженерно-геодезических изысканий использованы следующие нормативные документы:

- СП РК 1-02-105-2014 «Инженерные изыскания для строительства. Основные положения»;
- СНиП РК 1.02-18-2004. «Инженерные изыскания для строительства. Общие правила выполнения»
 - «Инструкция по топографическим съемкам М 1:5000 1:500»;
 - «Условные знаки для топографических планов М 1:5000 1:500»;

СТ РК 1398-2005 Дороги автомобильные. Инженерные изыскания для строительства, реконструкции и капитального ремонта. Требования к оформлению отчётов.

СТ РК 1399-2005 Дороги автомобильные. Инженерные изыскания для строительства, реконструкции и капитального ремонта. Требования к составу работ.

2.4 Организация полевых и камеральных работ

Полевые геодезические работы при производстве изысканий включают в себя следующие виды работ:

- рекогносцировку местности;
- планово-высотное обоснование геодезической сети;
- тахеометрическую съемку участка в масштабе 1:1000;
- обследование элементов обустройства автодороги, воздушных и подземных коммуникаций.

Камеральные работы включают в себя:

- обработку полевых материалов;
- создание цифровой модели местности (ЦММ);
- составление пояснительной записки и сопроводительной документации к отчету;
- формирование технического отчета.

Полевые работы по создание геодезической сети на объекте и топографическая съемка местности выполнялись с использованием комплектов тахеометра Leica TC705, и GPS Leica 1200 (база+ровер). Капитальный ремонт подъездной дороги к селу Монке би Шалкарского района Актюбинской области

Элементы обустройства дороги и притрассовой полосы сфотографированы.

Камеральные работы по составлению плана съемки выполняли непосредственные исполнители полевых работ.

2.5 Производство измерений по созданию планово-высотного геодезического обоснования на объекте

На участке было закреплено 2 репера. Временные репера закреплены на местности дюбель в бетоне, точка на водопропускной трубе. Координаты и высоты временных реперов указаны в приложении 2.

Производство измерений по созданию опорного планово-высотного геодезического обоснования.

Координаты и высоты пунктов определялись из GPS-измерений с использованием 2-х GPS-приёмников фирмы «Leica» «GPS-System 1200». Камеральная обработка измерений выполнялась непосредственно на объекте с использованием программного обеспечения для GPS-данных «LEICA GeoOffice».

GPS-измерения на объекте выполнялись в режиме «RTK измерений». Координаты и высоты всех пунктов определялись радиальным методом.

Для этого на объекте была определена референцная станция. GPS-приёмник устанавливался над точкой на штативе и центрировался оптическим методом. Наблюдения на reference станции велись непрерывно в течение всего рабочего дня. Координаты исходной (базовой) станции в режиме статического самоопределения, определялись в системе координат WGS-84 (WorldGlobalSystem). После определения координат станции в системе координат WGS-84, переключается режим на (RTK Reference), после чего GPS 1200 начинает передавать радио — сигнал для производства измерений при помощи GPS приемника (Rover). Так как базовая станция имеет систему координат WGS-84, а данная система предназначена только для позиционирования с неудовлетворительной точностью при производстве топографической съемки, то при помощи прикладной программы LGO (LeicaGeoOffice) производится пересчет координат в местную систему, удовлетворяющую всем требованиям нормативных документов РК.

После всех приготовлений производились RTK измерения по всем, заранее заложенным реперам. Точность определения координат и высот реперов в режиме RTK-измерений составляет ≤ 0.010 м.

Полученные невязки не превышают допустимых, и распределены в измеренные превышения.

2.6 Тахеометрическая съемка и специальные работы при линейных изысканиях

Производилась GPS-приемниками «GPS-System 1200» и электронными тахеометрами TC-705 фирмы «Leica». Электронными тахеометрами съемка производилась с точек, определенных GPS-наблюдениями, а также с точек съемочного обоснования (в процессе самой съемки), построенного от точек магистрального хода.

В рабочее положение инструмент приводился:

- -центрированием над точкой не грубее ± 0.002 м;
- -измерением высоты инструмента не грубее ± 0.001 м;
- -ориентированием не менее чем по двум смежным направлениям;
- -вводом координат станции стояния и ориентирование до 0,001м E(y); N(x);H;
- -определением результатов измерений по направлениям ориентирования не грубее dHD $0.010 \mathrm{m}$ dH $0.010 \mathrm{m}$ при расстояниях до $0.5 \mathrm{\ km}$.

Съемке (набору пикетов) с детальностью масштаба 1:1000 (0,5 м) подлежало:

Поперечник: обязательному отображению на существующей трассе подлежало

а) осевая линия (ось)

Капитальный ремонт подъездной дороги к селу Монке би Шалкарского района Актюбинской области

- б) края проезжей части (края покрытия) КПЧ
- в) края существующего полотна (верх насыпи), бровки, низ насыпи, низа откосов, дно кювет резервов, придорожные арыки и.т.п.
 - г) дополнительные точки, формирующие полотно дороги

Съемке с подробностью масштаба 1:500 (0,5м) подлежали:

- места пересечений и примыканий существующих дорог и съездов
- участки с жилой и промышленной застройкой
- участки других автотранспортных служб, попадающих в полосу съемки
- участки перестраиваемых воздушных и подземных инженерных коммуникаций
- в местах искусственных сооружений, труб, тальвеги логов и т.п.
- дороги с учетом угла пересечения осей.

При выполнении электронно-тахеометрической съемки полевой процесс производился с контролем горизонта прибора на наиболее удаленные точки съемки путем повторного взятия отсчета на одну и ту же точку со смежных станций наблюдения. Этими связующими контрольными точками являлись, прежде всего, осевые точки полотна, назначенные, как обязательные к отображению поперечниками, а также назначенные строительные репера.

В результате камеральной обработки полевых данных построена цифровая модель местности в программном комплексе КРЕДО III.

Технический отчет состоит из графических материалов изысканий и пояснительной записки, содержание которых регламентировано техническим заданием.

3. Охрана труда и техника безопасности

Сотрудники полевого подразделения для производства работ были экипированы спецодеждой, соответствующей сезону года и имеющей светоотражающие полосы.

Перед выездом на полевые работы сотрудники отдела прошли инструктаж по технике безопасности.

Полевые работы на автодороге выполнялись сотрудниками, одетыми в яркие жилеты со светоотражающими полосами. Работа проводилась только в светлое время суток.

4. Заключение

Характеристика качества выполненных измерений, принятая методика, а также результаты анализа топографо-геодезических работ подтверждают соответствие выполненных изысканий требованиям действующей Инструкции.

Достигнутая плотность и точность результатов измерений при развитии съёмочных сетей, а также средние ошибки съемки рельефа и положения контуров местности, по данным контрольных измерений, соответствуют требованиям действующих нормативнометодических документов.

Материалы топографической съемки в масштабе 1:1000 могут быть использованы для проектирования и строительства, автомобильных дорог.

Рекомендуется, при производстве земляных работ, производить согласование с соответствующими организациями для предотвращения порыва подземных коммуникаций, так как отдельные сети не могут быть обнаружены (обесточены, не действующие и стекловолоконные) приборами поиска.

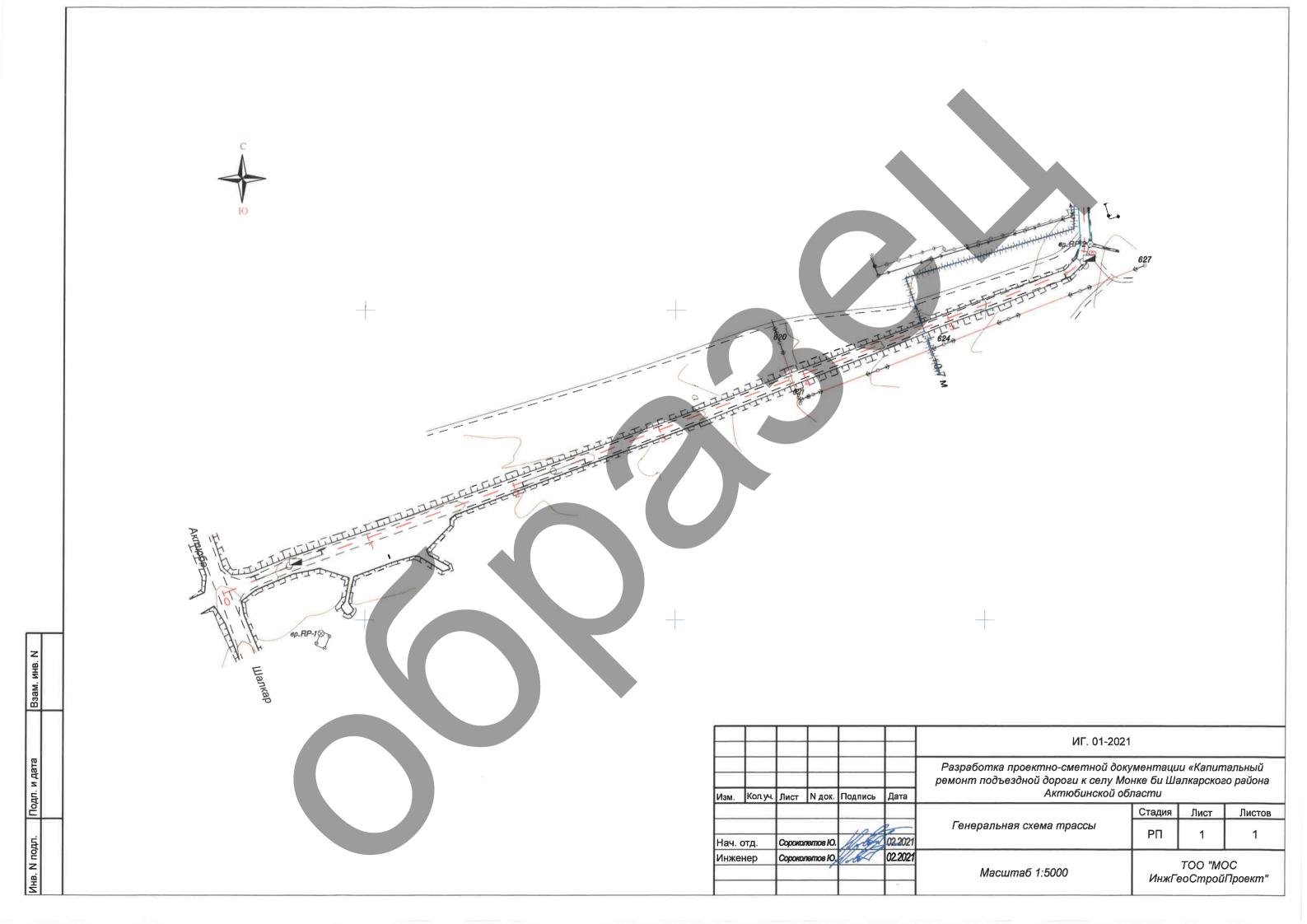
Пояснительную записку составил:

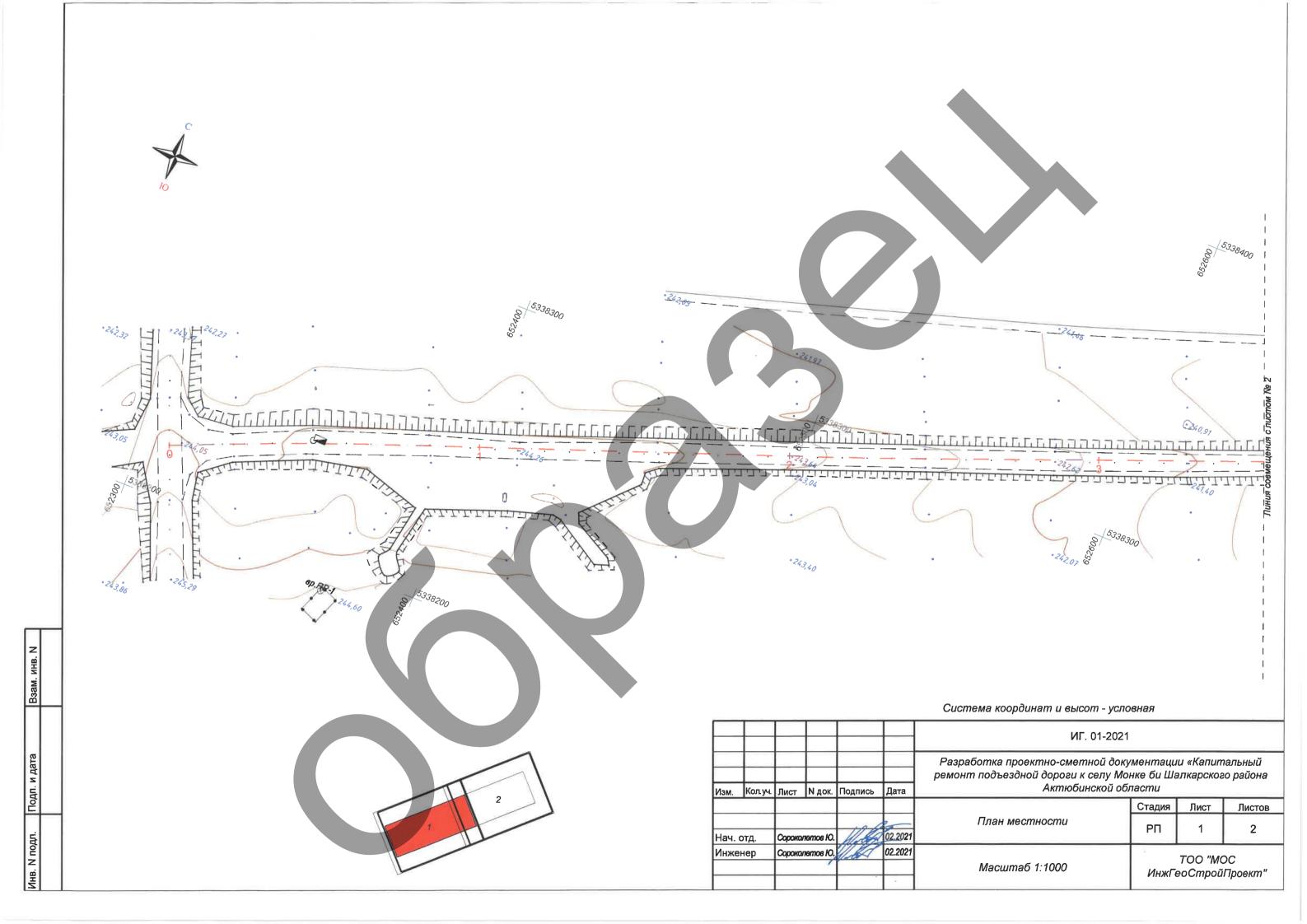
И, Е Сороколетов Ю.А.

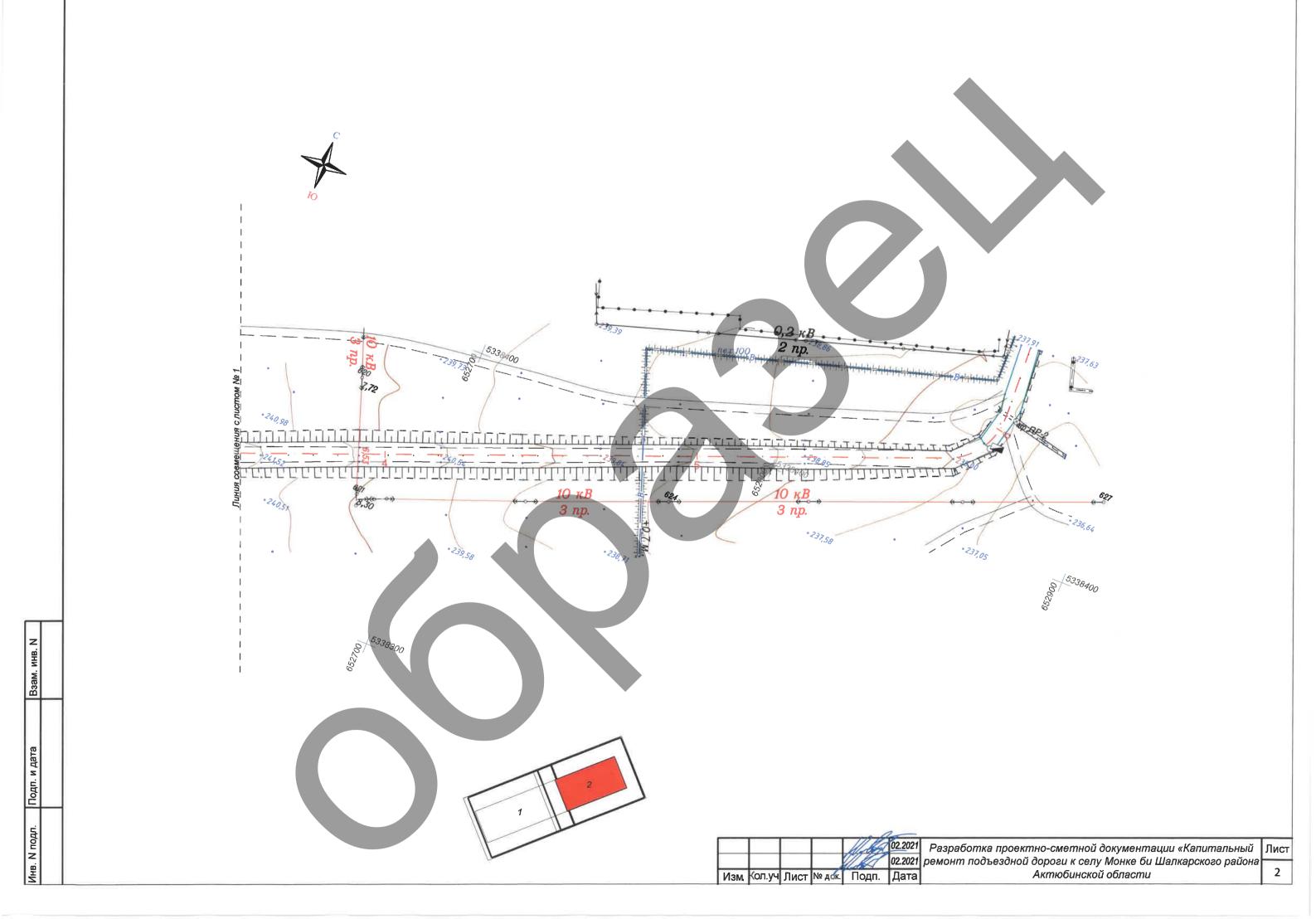
Фотоприложение

ПК0+49,3 вправо 47,5 м. РП-1 дюбель в бетоне

ПК6+4,5 вправо 3,6 м. РП-2 точка на водопропускной трубе


ПК6+4,5 вправо 3,6 м. РП-2 точка (след от дюбеля) на водопропускной трубе




Примыкание подъездной дороги к улице села Монке би

Общий вид подъездной дороги и пересечение с ДЭП 10кВ, линией водопровода

приложения

Директор

TOO "Amir Zhoba"

Есенгазиев М.К.

января 2021г.

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

НА ВЫПОЛНЕНИЕ ТОПОГЕОДЕЗИЧЕСКИХ ИЗЫСКАНИЙ

Местоположение объекта — Республика Казахстан, Актюбинская область Наименование объекта: разработка ПСД на «Капитальный ремонт автодороги по ул. бр. Колжановых L=0,7км, по ул. Ж. Кабакбаева L=0,55км, по ул. Бостандык L=0,08км в г. Шалкар, капитальный ремонт подъездной дороги к с. Жалтыр Шалкарского района Aктюбинской области \hat{L} = 2,25км, капитальный ремонт подъездной дороги к с. Монке би Шалкарского района Aктюбинской области L=0,5км, капитальный ремонт подъездной дороги к с. Аккайтым Шалкарского района Актюбинской области L= 1,95км, капитальный ремонт подъездной дороги к с. Байкадам Шалкарского района Актюбинской области L= 2,0км».

Общая протяженность участков — 8,08км (уточнить при изысканиях).

Общая часть

При производстве инженерно-геодезических изысканий для проекта выполнить комплекс работ, обеспечивающий получение топографо-геодезических матёриалов и данных, необходимых для принятия проектных решений и основных технико-экономических показателей строительства проектируемого объекта, а также для производства других видов инженерных изысканий.

Изыскательские работы должны выполняться комплексной бригадой специалистов с

использованием современного геодезического оборудования.

Точность полевых измерений должна соответствовать нормативным требованиям РК при реконструкции автомобильных дорог. Материалы топографических изысканий должны быть выполнены согласно СП РК 1.02-105-2014 «Инженерные изыскания для строительства. Основные положения». Отчеты должны быть представлены в соответствии с требованиями СТ РК 1399-2005 «Дороги автомобильные. Инженерные изыскания для строительства, реконструкции и капитального ремонта».

1. Полевые изыскания для объекта включают в себя следующие виды работ:

Рекогносцировка местности

Топографическая съемка в масштабе 1:1000 для создания цифровой модели местности на протяжении 8,08 км (уточнить при изысканиях) в условной системе координат и высот.

• Съемка поперечных профилей по 30м от оси дороги в каждую сторону (или по

границе застройки) через 40м, а также в характерных местах.

Съемка пересекаемых надземных коммуникаций (ЛС, ЛЭП и т.д.) в пределах 1-ой опоры, от предполагаемой оси трассы в каждую сторону, а также высоту столбов, количество проводов и провис нижнего провода по оси дороги.

Съемка подземных коммуникаций в пределах ближайших смотровых колодцев с указанием технических характеристик (глубина закладки, материал из которого

выполнен данный вид коммуникации).

- Тахеометрическая съемка М 1:1000 с сечением рельефа через 0,5 м.
- Закладка временных точек съемочного обоснования в пределах видимости, не реже чем через 1000 м. При закладке максимально использовать элементы постоянных сооружений (трубы, обечайки колодцев и т.д.).

2. Топографические камеральные работы

Цифровая модель местности должна быть создана в программном комплексе CREDOIII с учетом следующих условий:

- Масштаб съемки М 1:1000 с сечением рельефа через 0,5 м.
- По точкам осей проезжей части, кромок проезжей части, бровок земляного полотна, тротуаров, бордюров, откосов (верх и низ), дно кюветов и прочих искусственных неровностей рельефа провести соответствующие именованные структурные линии.
- Поверхность должна быть построена исключительно по съемочным точкам. Не допускается создание дополнительных точек рельефа и ситуации как по отдельности, так и по сплайнам, полилиниям и пр.
- При нанесении коммуникаций использовать функции программы для указания глубины заложения либо высот провисов (для отображения коммуникаций на продольном и поперченном профилях и прочих разрезах).
- По требованию Заинтересованных организаций (НПЦЗем, и т.д.) при отводе карьеров и земель под автомобильную дорогу выполнить работы по переводу необходимых материалов из условной системы координат в требуемую (географические и прочие системы координат).

3. Составление отчета о инженерно - геодезических изысканиях

Инженерно - геодезический отчет должен содержать информацию о:

- Системе координат и высот, нормативные документы, точность работ и допустимые невязки.
- Закладки реперов и точек съемочного обоснования
- Планово геодезическом обосновании
- Высотно геодезическом обосновании
- Производстве измерений по созданию опорного планово-высотного геодезического обоснования
- Электронно тахеометрической съемке (либо о том, как производились работы)
- Камеральной обработке
- О остальных видах работ, не указанных выше.

В приложении отчета необходимо привести следующие документы:

- Генеральная схема трассы
- Ведомость реперов
- Схема расположения реперов
- Фотографии реперов
- Ведомость пересечений, существующих надземных коммуникаций с трассой
- Карточки пересечений существующих надземных коммуникаций с трассой
- Ведомость пересечений, существующих подземных коммуникаций с трассой
- Ведомость надземных и подземных коммуникаций, проходящих параллельно трассе.
- Ведомость существующих пересечений и примыканий
- Ведомость существующих искусственных сооружений (трубы, мосты и т.д.)

- Составить карточки существующих малых ИССО с фотографиями
- Ведомость существующих дорожных знаков
- Ведомость барьерных ограждений
- Ведомость существующих сигнальных столбиков

В результате выполненных работ представляется следующая документация:

- Цифровая модель местности в программном комплексе CREDO III.
- Топографический план M 1:1000 в программе AutoCad.
- Отчет о инженерно геодезических изысканиях с приложениями 3 экземпляра на бумажном и 1 электронном носителях.

Составил ГИП

ter

Д.В. Корниевский

Приложение 2

Ведомость реперов

No.	Название			M	Гестоположение					
. H. H.		ПК+	лево	право	X	Y	Z	IIInpota WGS84	Долгота WGS84	Описание
1	Rp-1	0+49,3		47,5	47,5 5338191.28	652371.65	244.80	652371.65 244.80 48° 09' 31.953535" N 59° 02' 49.096574" Е Дюбель в бетоне	59° 02' 49.096574" E	Дюбель в бетоне
2	Rp-2	6+04,5		3,6	3,6 5338442.72	652867.48	237.28	652867.48 237.28 48° 09' 39.661248" N 59° 03' 13.399157" E	59° 03' 13.399157" E	Край трубы

Составил:

Сороколетов Ю.А.

Капитальный ремонт подъездной дороги к селу Монке би Шалкарского района Актюбинской области

Ведомость пересечений подземных коммуникаций с. Монке Би

Примечание	
Владелец, адрес, телефон, факс	1
Угол пересече- ния, градусы	92
Диаметр, мм	100
Отметка пересекаемой Диаметр, пересече- коммуникации, мм ния, м градусы	236,45
Наименование коммуникации Техническая характеристика	Водопровод (ПВХ)
ППОС	4 82,55
J J J	4
KM]	7
№М KM IIK плюс	-

Составил:

Сороколетов Ю.А.

Капитальный ремонт подъездной дороги к селу Монке би Шапкарского района Актюбинской области

Ведомость пересекаемых наземных коммуникаций с. Монке Би

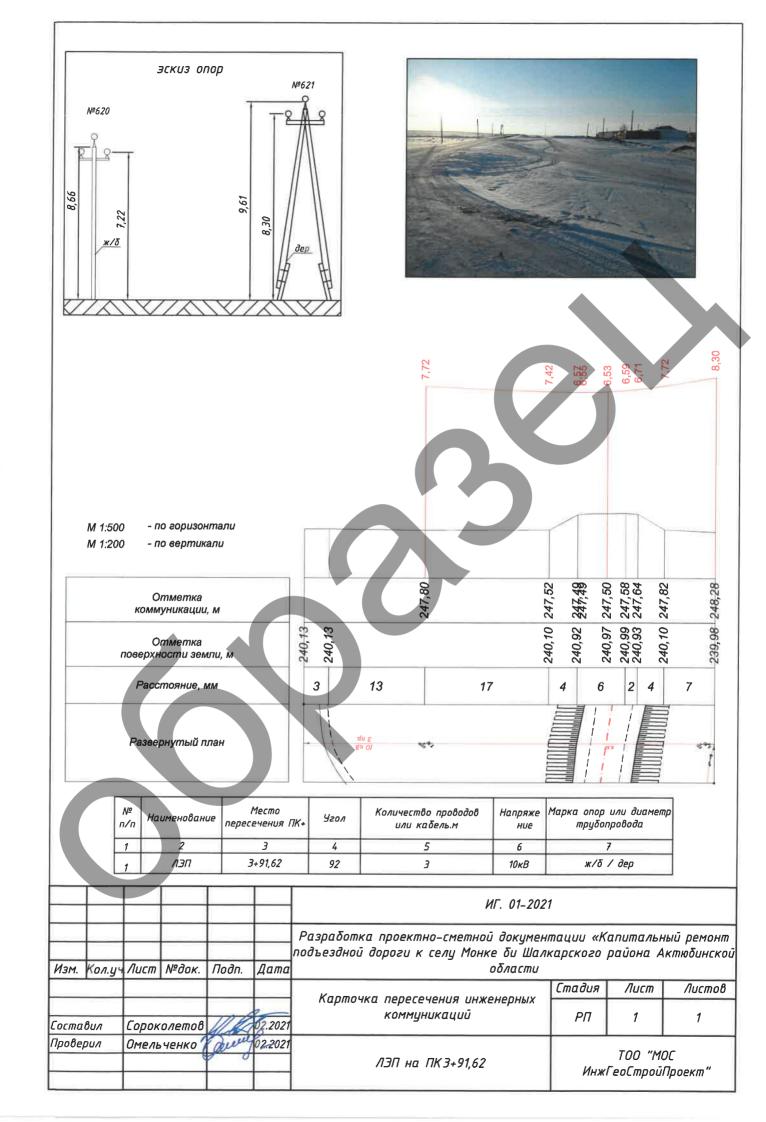
Владелец	
Диаметр	
Материал Диаметр	AC
Отметка (высота) нижнего провода	6,53
Кол-во проводов	3
Напряжение	10 кВ
Угол пересечения с трассой	92
место пересечения ПК+	3+91,62
Наименование пересечения пересечения I	ЛЭП в.напряж.

Составил:

Сороколетов

Капитальный ремонт подъездной дороги к селу Монке би Шалкарского района Актюбинской области

Ведомость существующих коммуникаций вдоль трассы


Наименование коммуникаций и их категория	Владелец	слева	справа	Место сближения по	Расстояние от существующей	Характеристика	Расположе ние	Глубина заложения (высота	Примечания
Водопровод			+	4+82-x.Tp	19-35	IIBX Ø 100	подзем.	провиса), м	
ЛЭП 0,2кВ			+	4+67-к.тр	25-42	2 провода АС, дер опоры	возд.		
ЛЭП 10кВ		+		3+92-к.тр.	15-18	3 провода АС, дер/ ж/б опоры	возд.		

Составил:

Проверил:

Сороколетов

Омельченко

Ведомость существующих пересечений и примыканий

No	Место- положение	Тип покрытия	Направл	тение	Угол пересечения
	пк+	покрытия	влево	вправо	пересечения
1	0+00	гравийное	Шалкар-А	Актобе	90
2	5+94	асфальт	ул. села (при	мыкание)	0

Составил:

Сороколетов

Проверил:

Омельченко